

8401 Greensboro Drive, Suite 500, McLean, VA 22102 | 703.848.1900 | contact@celerity.com

Setting up Episerver to Run as an Azure Application
By John Dymond | .NET Engineering Lead | Celerity | jdymond@celerity.com

Overview:

Azure applications offer an extremely scalable and inexpensive option for hosting Episerver web
sites in the cloud. Compared with the cost of on-premise server and virtual machine options, as
well as the evolution of Azure’s application suite, it is a very compelling option for deploying your
Episerver web sites.

Below is a tutorial to do just that. This was inspired after realizing that the Episerver
documentation for the process is a little outdated and the process has become more
streamlined. Start with Episerver’s guide as a refresher on the official documentation before
proceeding.

The steps below assume that you have set up your Nuget package manager with the
prerequisite packages - namely Episerver and Episerver Azure.

Steps:

1) Create your Episerver Project in Visual Studio

Start by creating an Episerver project in Visual Studio. I always check the box to create a new
Git repository. This is a good practice whether or not you choose to use Continuous Integration
later. It will save you from needing to set up source control manually later in the project.

1. The documentation references creating an Alloy project, but I would recommend an
empty project. It is easier to add pieces to an empty project than to remove them from
Alloy. This option does not allow you to configure search at this time, but that is ok. You
can set this up later.

2. Manually add your Episerver license file to the project. Add this to the root of the web
application.

mailto:jdymond@celerity.com
http://world.episerver.com/documentation/Items/Developers-Guide/Episerver-CMS/9/Deployment/Deployment-scenarios/Deploying-to-Azure-webapps/

8401 Greensboro Drive, Suite 500, McLean, VA 22102 | 703.848.1900 | contact@celerity.com

2) Set up Azure

1. Log into the Azure portal. You now need to set up the environment where the application
will reside. The application will be "Web App + SQL". You could independently set up the
application and database, but this option streamlines the process and you will want both.

2. Assign a domain name and chose the proper subscription plan. Create a new plan or
use an existing one.

8401 Greensboro Drive, Suite 500, McLean, VA 22102 | 703.848.1900 | contact@celerity.com

3. Select your tier. This can be adjusted later, but it is worth taking some time to find the
plan that makes the most sense for your expected site content and usage. Azure has a
free tier for both Web Apps and Sql. This is good to use if you are just trying it out as a
demo.

8401 Greensboro Drive, Suite 500, McLean, VA 22102 | 703.848.1900 | contact@celerity.com

4. Click the "View all" button to select the appropriate tier.

5. Set up a database back on the main Web App + Sql frame. Follow the same steps as
web site setup to establish a database. Databases also have a free tier, which is what I
selected for this demonstration. Once you do this step you now have a running
environment to deploy your Episerver project into the cloud. Now, we just need to hook
together a few remaining pieces.

8401 Greensboro Drive, Suite 500, McLean, VA 22102 | 703.848.1900 | contact@celerity.com

3) Establish a Publishing Profile

Back to Visual Studio: From here, you need to have web publishing enabled. If you do not, you
can find it here:

1. Click on Create Publish Settings. You will need to create a new profile if one does not
already exist and just give it a name. Dev, Test, and Prod are common publish profiles.

8401 Greensboro Drive, Suite 500, McLean, VA 22102 | 703.848.1900 | contact@celerity.com

2. From here you can either choose to import a publish profile (from the Azure console) or
use the App Service integration available. We are going to use the 2nd option and use
the App Service.

3. To use this option, you will either need to login or be on the active account that has
permission to access the Azure web app we set up previously. If done correctly, you
should have no problems finding the application.

8401 Greensboro Drive, Suite 500, McLean, VA 22102 | 703.848.1900 | contact@celerity.com

It is worth noting that the steps I presented are not the only way to set up your project
with an Azure profile. It is worth exploring how to set up your Azure environment straight
through the publish profile interface. The process is constantly improving and may be
even more streamlined by the time you read this article.

4. When you browse the connection tab within the deployment wizard you should see all of
your details auto-loaded. Proceed to settings.

5. Within settings, you should choose the configuration type you want for this publish
profile. Because I am using this as a manner to publish up to the cloud (and do not
intend to debug) I will choose the built in release configuration.

6. Refer to the Episerver documentation referenced at the top of this tutorial for database
deployment setup. In this part we are defining how the database will be installed on the
remote Azure environment. The only truly noteworthy thing of mention for these steps is
that the 1st deployment is different than subsequent deployments. Once Episerver is up
and running in the cloud, you will want to uncheck the Update database checkbox as we
will not be making database changes on any subsequent deployments (unless
attempting to upgrade).

7. In the preview tab of the publishing wizard we should be able to successfully preview
both the file and database schema setup. Click publish and watch your site get
deployed to Azure!

4) Continuous Integration

Continuous Integration (CI) is extremely useful in any project that has multiple team members. It
means that deployments can be triggered by source control changes and avoids the possibility
that multiple users try to deploy files at the same time (as it queues deployments). The only truly
negative downside is that it is not always easy to automate every build process necessary to
take code from source to build state and forces you to use a 100% automated approach to
deployment vs. the inclusion of some manual steps. But the pain is well worth the gain as you
will have an extremely streamlined deployment process and all settings within source control for
retention purposes.

To set up CI for an Azure application, I am a big fan of using the Build & Release portions of
TFS. These features can get extremely granular and support a ton of different applications that
could be part of your build processes outside of .NET.

*Regardless of how you set up CI, you will need the admin configuring the builds to be an Azure
"Global Admin.” Otherwise, you will run into permissions issues and be unable to deploy your
build. Refer to this article for more details.

1. Go to your project within Team Foundation Server. This tutorial is for the cloud version of
TFS. If using the on-premise edition of TFS, the steps may vary greatly.

2. Go to the Build & Release tab and create a new definition.

mhtml:file://C:%5CUsers%5Cmsmith%5CAppData%5CLocal%5CMicrosoft%5CWindows%5CINetCache%5CContent.Outlook%5C44XK3VO6%5CSetting+up+Episerver+to+run+as+an+Azure+Application-Continuous+Integration.doc.mht!https://www.visualstudio.com/en-us/docs/release/getting-started/azure-rm-endpoint#privileges

8401 Greensboro Drive, Suite 500, McLean, VA 22102 | 703.848.1900 | contact@celerity.com

3. There are many different definitions within the build definition template options. By
default, Visual Studio is selected. This is the one we want. Click Next.

4. Choose the repository source, repository, branch, and check the box for Continuous
Integration. Leave everything else as is, and click Create.

To recap what we just did: we created a brand new build definition, wired it to a branch

8401 Greensboro Drive, Suite 500, McLean, VA 22102 | 703.848.1900 | contact@celerity.com

within source control, and told TFS to perform a build anytime a branch has accepted a
code push. We are almost done now.

5. By default, TFS will configure a set of steps to perform on the build. Not all of these are
needed and some will need tweaks in order to complete an Episerver deployment. Until
you are comfortable with build definitions, I would recommend disabling build steps
instead of deleting them. This will allow you to add them back quickly should you find
you made a mistake while experimenting. For the purposes of this tutorial, you can
delete the Test and Publish Symbols Path steps. These are not used in our example.
Your build definition should now look something like this:

6. We are going to make some changes to the NuGet build step. This is not required for a
deployment if you also manually deploy a project within TFS (outlined in the publish
steps earlier). However, I feel it is important to self-contain your projects to be able to
build everything through source control from the ground up. This is useful should you
need to scale out at a later date.

8401 Greensboro Drive, Suite 500, McLean, VA 22102 | 703.848.1900 | contact@celerity.com

Select a path to your project solution as well as a path to the NuGet.Config file. You may
not be able to find a NuGet.Config file in your project or solution. I actually had to refer to
the following article to be able to find the machine-wide NuGet.Config file and manually
copy it to the solution folder. Nuget can be configured many different ways and is not in
the scope of this tutorial. I chose the default setup, which puts the packages at the
solution level (out of source control). Therefore, this build process chooses the Restore
option for installation type.

Nuget.config location: http://stackoverflow.com/questions/12836634/how-to-make-nuget-
nuget-config-file-attached-to-vs-solution-to-be-not-ignored

This step will likely be where you could run into issues and need tweaking as it is the
only part of the project that involves customization to the point. You may need to make

adjustments if that is the case.

The only thing I would mention under the build step is that you should verify that the
Visual Studio version matches the version of Visual Studio you have. We need to ensure
the exact same build engines are used or you could run into issues.

7. Save your build definition. It should automatically kick off a build. Queue a new build if it

has not. If everything was configured properly you should see a green success status at
the end of the build. If not, pay attention to the part of the build that failed and make
adjustments to fix that step. Continue until you have reached a 100% success status.
Once finished, this build process has been completed for the code check-in of every
developer on the project! They will thank you later.

8. Congrats! If you have enabled the build use CI and configured it properly, you should

now see the site updated after every successful build.

Important Factors to Consider

In a real world setting, you will want to have several build processes and several branches
piloting those deployments. For releases in particular, you do not want to have such a
streamlined approach from code check in to deployment. Instead, I am a much bigger fan of a
production deployment from within Visual Studio itself or through planned releases. This manual
process is far less likely to be done on accident and allows you to limit who has the ability to fire
off a deployment of this sort.

We did not discuss transforms in this demo, but they play a significant part in this process as
well. A typical solution will use CI in the dev and potentially test environments. In an Azure

http://stackoverflow.com/questions/12836634/how-to-make-nuget-nuget-config-file-attached-to-vs-solution-to-be-not-ignored
http://stackoverflow.com/questions/12836634/how-to-make-nuget-nuget-config-file-attached-to-vs-solution-to-be-not-ignored

8401 Greensboro Drive, Suite 500, McLean, VA 22102 | 703.848.1900 | contact@celerity.com

application setting, this will likely mean different applications and settings for each
environment. This can all be managed through transforms and publish settings. A side effect to
this level of thoroughness is that all environmental settings will be source-controlled.

Lastly, application settings should be handled within the web.config and/or transform files
whenever possible. Setting them up on the server can shield important details from other
developers and does not lend itself well to replication should an application need to be torn
down or stood up quickly. It is good practice that as many details as possible be available to
source control and build processes.

	4) Continuous Integration
	Important Factors to Consider

